Smoothing of bump functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing of Bump Functions

Let X be a separable Banach space with a Schauder basis, admitting a continuous bump which depends locally on finitely many coordinates. Then X admits also a C∞-smooth bump which depends locally on finitely many coordinates.

متن کامل

Definable Smoothing of Continuous Functions

Let R be an o-minimal expansion of a real closed field. Given definable continuous functions f : U → R and : U → (0,+∞), where U is an open subset of Rn, we construct a definable Cm-function g : U → R with |g(x)− f(x)| < (x) for all x ∈ U . Moreover, we show that if f is uniformly continuous, then g can also chosen to be uniformly continuous.

متن کامل

Image Smoothing with Exponential Functions

Noise reduction in images, also known as image smoothing, is an essential and rst step before further processings are done on the image. The key to image smoothing is to preserve important features while removing noise from the image. Gaussian function is widely used in image smoothing. Recently it has been reported that exponential functions (value of the exponent is not equal to 2) perform su...

متن کامل

Smoothing Spline Estimation of Variance Functions

This article considers spline smoothing of variance functions. We focus on selection of smoothing parameters and develop three direct data-driven methods: unbiased risk (UBR), generalized approximate cross validation (GACV) and generalized maximum likelihood (GML). In addition to guaranteed convergence, simulations show that these direct methods perform better than existing indirect UBR, genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2008

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2007.06.006